Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Klin Lab Diagn ; 65(12): 757-766, 2020 Dec 29.
Article in English | MEDLINE | ID: covidwho-1000746

ABSTRACT

The COVID-19 pandemic, associated with the new coronavirus SARS-CoV-2, has caused a surge in incidence worldwide, as well as a severe crisis in global health and economy. Therefore, fast and accurate diagnosis of infection is key to timely treatment and elimination of the spread of the virus. Currently, the standard method for detecting coronavirus is reverse transcription polymerase chain reaction (RT-PCR). However, this method requires expensive equipment and trained personnel, which limits the conduct of mass testing and lengthens the time to obtain a research result. Serological tests for antibodies against SARS-CoV-2 and the determination of protective immunity in various populations are used to retrospectively identify patients with asymptomatic and mild forms of infection, monitor the course of infection in hospitalized patients, and also track contacts and epidemiological surveillance. The use of standard methods for diagnosing COVID-19 in conditions of mass morbidity, especially in conditions of insufficient resources and lack of appropriate infrastructure, is associated with a number of limitations. Therefore, the search and development of new, fast, inexpensive, simple, device-free and no less sensitive and specific tests is an urgent task. Therefore, the search and development of new, fast, inexpensive, simple, device-free and no less sensitive and specific tests is an urgent task. The review examines new laboratory technologies for diagnosing a new infection - loop isothermal amplification (LAMP) and immunochromatographic analysis (ICA), which can become a real alternative to the used molecular and enzyme immunoassay methods. The dynamic development of these methods in recent years expands the prospects for their use both for diagnosing COVID-19 and monitoring a pandemic.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Pandemics , Chromatography, Affinity , Humans , Laboratories , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL